MATH2050C Quiz 4b

1. (10 marks) Use ε - δ formulation to show that the function f is continuous at x_0 if there is some constant M > 0 such that

$$|f(x) - f(x_0)| \le M |x - x_0|^2$$
, $\forall x \in (x_0 - 1, x_0 + 1)$.

Solution. We let $\delta = \min\{1, \sqrt{\varepsilon/M}\}$. Then for $x, |x - x_0| < \delta$, we have $x \in (x_0 - 1, x_0 + 1)$ so

$$|f(x) - f(x_0)| \le M |x - x_0|^2 < M \delta^2 = \varepsilon$$
,

we conclude that f is continuous at x_0 .

2. (10 marks) Define h(x) = 3x when x is rational and h(x) = 2x - 5 when x is irrational. Determine all points of continuity of h.

We claim the only continuity point of h is -5. Let x_0 be a point of continuity of h. Pick a sequence of rational numbers $x_n \to x_0$, then $h(x_n) \to h(x_0)$ by continuity. As $h(x_n) = 3x_n \to 3x_0$, one must have $h(x_0) = 3x_0$. On the other hand, pick a sequence of irrational $z_n \to x_0$. We have $h(z_n) \to h(x_0)$. As $h(z_n) = 2z_n - 5 \to 2x_0 - 5$ too, one must have $h(x_0) = 2x_0 - 5$. From $3x_0 = 2x_0 - 5$, we get $x_0 = -5$.